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Linearized dynamics of spherical bubble clouds 
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The present work investigates the dynamics of the one-dimensional, unsteady flow 
of a spherical bubble cloud subject to harmonic far-field pressure excitation. Bubble 
dynamics effects and energy dissipation due to viscosity, heat transfer, liquid 
compressibility and relative motion of the two phases are included. The equations of 
motion for the average flow and the bubble radius are linearized and a closed-form 
solution is obtained. The results are then generalized by means of Fourier synthesis 
to the case of arbitrary far-field pressure excitation. The flow displays various 
regimes (sub-resonant, trans-resonant and super-resonant) with different properties 
depending on the value of the relevant flow parameters. Examples are discussed in 
order to show the effects of the inclusion of the various energy dissipation 
mechanisms. Finally the results for the case of Gaussian-shaped far-field pressure 
change are presented and the most important limitations of the theory are briefly 
discussed. The simple linearized dynamical analysis developed so far clearly 
demonstrates the importance of the complex phenomena connected to the interaction 
of the dynamics of the bubbles with the flow and provides an introduction to the 
more realistic study of the same flows with nonlinear bubble dynamics. 

1. Introduction 
This paper illustrates part of our current research on the role played by the 

dynamics of bubble volume changes in the fluid mechanics of bubbly or cavitating 
flows. It represents the natural extension of our previous work on the dynamics of 
steady two-dimensional bubbly flows over slender profiles (d’Agostino, Brennen & 
Acosta 1988). Specifically, it studies the effects of the inclusion of bubble dynamic 
response in one-dimensional unsteady flows of spherical bubble clouds subject to far- 
field pressure perturbation. 

Among the practical objectives of this study is a better understanding of the global 
effects of many bubbles on the dynamics and, in particular, on the acoustical 
behaviour of bubbly and cavitating flows. Traditionally the acoustical properties of 
bubbly cavitating flows have been analysed and interpreted on the basis of single- 
bubble dynamics as the colletive result of the simultaneous but independent 
contributions due to the presence of a wide spectrum of bubbles. The interactive 
effects that the bubble volume changes can have on the pressure distribution (and 
therefore on the flow velocity field) were neglected, thus preventing the analysis of 
any large-scale internal motion in the bubbly region of the flow. The traditional 
approach may be adequate when the bubble concentration is extremely low and only 
occasional bubbles occur, but it clearly loses validity when the bubble concentration 
becomes larger and the possibility of global motion in the bubbly mixture arises. In 
this cam significant alterations will occur in the pressure distribution and therefore 
in the dynamic behaviour of the bubbly flow. For example, the optical observations 
of travelling bubble cavitation on Schiebe headforms in water tunnel tests by Marboe, 
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Billet & Thompson (1986) and the simultaneous measurements of the noise spectrum 
displayed the tendency of the noise spectrum to shift towards lower frequencies than 
expected from single-bubble dynamics considerations. Marboe and his co-workers 
suggested the occurrence of asymmetric bubble collapse as a possible cause of this 
phenomenon. In  view of our current results global bubble interaction effects in the 
cavitation region when a sufficient concentration of bubbles is present are another 
possible explanation of the observed downward shift of the cavitation noise 
spectrum. Similar recent experimental results by Arakeri & Shanmuganathan ( 1985) 
and M. Billet (1986, personal communication) have also helped identify bubble 
interactions in cavitating flows as a likely source of the observed discrepancies. The 
main purpose of this research is to provide some physical interpretation of the origin 
of these alterations. Despite the extensive linearizations inherent in the analysis we 
are confident that the results convey some qualitative understanding of the dynamic 
and acoustical properties of real bubbly flows. 

The last few decades have seen extensive research on the dynamics of bubbly flows 
(van Wijngaarden 1968, 1972; Stewart & Wendroff 1984). Early studies based on 
space-averaged equations for the mixture in the absence of relative motion between 
the two phases (Tangren, Dodge & Seifert 1949) did not consider bubble dynamic 
effects. This approach simply leads to an equivalent compressible homogeneous 
medium. In a classic paper Foldy (1945) accounted for the dynamics of individual 
bubbles by treating them as randomly distributed point scatterers. Assuming that 
the system is ergodic, the collective effect of bubble dynamic response on the flow is 
then obtained by taking the ensemble average over all possible configurations. Later, 
more general equivalent flow models of dispersed two-phase mixtures, which include 
the effects of bubble dynamics, liquid compressibility and relative motion, have been 
developed by ensemble, volume (Biesheuvel & van Wijngaarden 1984) or time (Ishii 
1975) averaging of the conservation equations for each separate phase. These models 
have been successfully applied to describe the propagation of both infinitesimal and 
finite-amplitude one-dimensional disturbances through liquids containing small gas 
bubbles (Carstensen & Foldy 1947; Fox, Curley & Larson 1955; Macpherson 1957; 
Silberman 1957 ; Noordzij 1973; Noordzij & van Wijngaarden 1974). 

A natural way to account for the effects of bubble dynamics and slip velocity 
between the two phases is to include the Rayleigh-Plesset and the relative motion 
equations in the space-averaged equations. However, because of their complexity, 
there are few reported examples of the application to specific flow geometries of the 
space-averaged equations which include the effects of bubble response. Recently 
Msrch (1980, 1981), Chahine (1982a, b ) ,  and others have focused their attention on 
the dynamics of a cloud or cluster of cavitating bubbles and have expanded on the 
work of van Wijngaarden (1964). Unfortunately, there appear to be a number of 
inconsistencies in this recent work which will require further study before a coherent 
body of knowledge on the dynamics of clouds of bubbles is established. For example, 
the early work of Chahine (1982~)  does not account for the large-scale effects that 
the bubble volume changes have on the velocity field and therefore on the pressure 
experienced by each individual bubbles, though in a later paper Chahine (1982 b )  does 
begin to consider these global interactions. On the other hand, Msrch and his co- 
workers (1980, 1981, 1982) have visualized the collapse of a cloud of cavitating 
bubbles as involving the inward propagation of a shock wave : it is assumed that the 
bubbles collapse completely when they encounter the shock. This implies the virtual 
absence of non-condensable gas in the bubbles and the predominance of vapour. Yet 
in these circumstances the mixture in the cloud will not have any real sonic speed. 
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As implied by a negative left-hand side of equation (13), the fluid motion equations 
for the mixture would be elliptic not hyperbolic and hence shock-wave solutions seem 
inappropriate. A discussion of the nature of the characteristics of spherical cavity 
clouds is contained in Pylkkanen (1986) for various bubbly flow models containing 
four, five and six independent variables. 

In the present programme we focused our attention on one-dimensional steady 
flows or two-dimensional time-dependent flows. In an earlier publication (d’ Agostino 
et al. 1988) and two previous notes (d’Agostino & Brennen 1983 ; d’Agostino, Brennen 
& Acosta 1984) we considered the two-dimensional steady flow of a bubbly liquid 
over wave-shaped surfaces and the undamped linearized dynamics of a spherical 
cloud of bubbles subject to an harmonic pressure field. The results clearly show that 
the fluid motion can be critically controlled by bubble dynamic effects. Specifically, 
the dominating phenomenon consists of the combined response of the bubbles to the 
pressure in the surrounding liquid, which results in volume changes leading to a 
global accelerating velocity field. Associated with this velocity field is a pressure 
gradient which in turn determines the pressure encountered by each individual 
bubble in the mixture. Furthermore, it can be shown that such global interactions 
usually dominate any local pressure perturbations experienced by one bubble due to 
the growth or collapse of a neighbour (see $ 5 ) .  In the present work the same 
approach, generalized with the inclusion of energy dissipation in the dynamics of the 
bubbles, liquid compressibility effects and relative motion between the two phases, 
is first applied to the time-dependent one-dimensional radial flow in a spherical 
bubble cloud subject to harmonic far-field pressure perturbations and then is 
extended to the case of small but arbitrary pressure excitation. 

During the preparation of this paper, the bubble-cloud flow problem has been 
independently addressed by Omta (1987) using a similar approach. Omta linearized 
the Biesheuvel-van Wijngaarden homogeneous flow equations for a bubbly mixture 
(Biesheuvel & van Wijngaarden 1984) and derived an analytical solution to the flow 
in a spherical bubble cloud. In  his work a number of simplifying assumptions have 
been introduced with respect to the present analysis. With a slight inconsistency, 
Omta neglected viscosity and liquid compressibility (and therefore their con- 
tributions to damping) in the bubble dynamics, but retained them when considering 
the relative motion of the two phases and the propagation of pressure disturbances 
in the liquid. Surface tension has also been neglected and relative motion does not 
affect the solution explicitely, since in Omta’s derivation the slip-velocity problem is 
fully decoupled from the cloud dynamics. Thus thermal damping is in practice the 
only dissipation mechanism accounted for. On the other hand, the above effects are 
included in the present theory and therefore their relative importance can be easily 
assessed. Although viscous and acoustic damping in the bubble dynamics and 
surface-tension effects can be important in small bubbles at high excitation 
frequencies (as indicated by Plesset & Prosperetti 1977 and confirmed here), the two 
treatments lead to virtually the same main conclusions on the general characteristics 
of the flow in the bubble cloud. Despite all its intrinsic limitations, the following 
linear analysis indicates some of the fundamental phenomena involved and 
represents a useful basis for the study of such flows with nonlinear bubble dynamics 
(which we intend to discuss in a later publication). 
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2. Basic equations 
Following the same approach previously indicated in our earlier works (d’Agostino 

& Brennen 1983; d’Agostino et al. 1984, 1988), several simplifying assumptions are 
introduced to obtain a soluble set of equations which still reflects the effects of bubble 
dynamic response. The relative motion of the two phases is initially neglected. The 
liquid is assumed inviscid and incompressible, with a density p and constant 
concentration P of bubbles per unit liquid volume. Also, the mass of the dispersed 
phase and all damping mechanisms in the dynamics of the bubbles are initially 
neglected. The effects introduced by the inclusion of the heat transfer and relative 
motion between the phases as well as of the viscosity and compressibility of the liquid 
on the energy dissipation in the flow will be considered later. Then, if external body 
forces are unimportant, the velocity u(x ,  t )  and the pressure p ( x ,  t )  (defined as the 
corresponding quantities in the liquid in the absence of local perturbations due to 
any- neighbouring bubbles), satisfy the continuity and momentum equations in the 
form 

where D/Dt  indicates the Lagrangian derivative, 7(x, t )  is the individual bubble 
volume and P is related to the void fraction 01 by p7 = a / (  1 -01). Finally, under the 
additional hypothesis that the bubbles remain spherical, it follows that 7 = 4nR3/3, 
with the bubble radius R(x,  t )  determined by the Rayleigh-Plesset equation 
(Plesset & Prosperetti 1977 ; Knapp, Daily & Hammit 1970) : 

p , - p = R - + - -  DZR 3 DR +-. 2 s  
P Dt‘ 2(  D t )  pR ( 3 )  

Here S is the surface tension and p ,  is the bubble internal pressure, which consists 
of the partial pressures of the vapour p ,  and non-condensable gas p, .  Neglecting 
thermal and mass diffusion effects within the bubbles, p ,  is assumed constant and 
p ,  is expressed by the polytropic relation of index q :  p ,  = pGo (R/R,)3q, where pG, is 
the gas partial pressure at the reference radius R,. Mass diffusion effects and other 
non-stationary phenomena are not, of course, included in the present theory. The 
determination of the polytropic index q requires the solution of the energy transfer 
problem across the bubble surface, as shown later in 3 3. For now, its value remains 
undetermined in the range from 1, in the isothermal limit, to y ,  the ratio of the 
specific heats of the non-condensable gas in the bubbles, which corresponds to 
isentropic conditions. 

Equations (l), (2) and (3), together with suitable boundary conditions, represent 
in theory a complete system of equations for u(x, t ) ,  p ( x ,  t ) ,  and 7(x, t ) .  However, in 
practice their highly nonlinear nature requires further simplifications for a cloaed- 
form solution to be attained even for very simple flows. 
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FIGURE 1. Schematic of a spherical cloud of bubbles. 

3. Dynamics of spherical bubble clouds 
3.1. Undamped case - harmonic excitation 

We consider first the problem of a one-dimensional inviscid flow of a spherical cloud 
of bubbles in an unbounded liquid at rest at  infinity, as shown in figure 1. Let the 
perturbation of the far-field pressure be defined in complex notation by the equation : 
p, ( t )  = p,[l +s exp (iot)] with 6 4 1 and let the subscript 0 indicate the unperturbed 
conditions corresponding to B = 0. Then, assuming for simplicity that all the bubbles 
have the same radius R,, the undisturbed pressure in the liquid is 

We limit our analysis to the case of uniform and relatively low void fraction so that 
the mean-flow velocity is small and purely radial, with component u(r ,  t ) .  Then (1), (2) 
and (3) reduce to i a  a7 

r2 ar at 
- - (r2u)  = (l-eo)/3-, 

au ap 
( 1 - e o ) p ~  = -- 

ar 

( 5 )  

Finally, eliminating u from (5) and (6) and using (7), one obtains the following 
equation for R(r, t )  : 

inside the cloud. For the incompressible single-phase flow outside the cloud, 
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where C ( t )  is of perturbation order in low-void-fraction flows. It follows that the 
continuity of p ( r ,  t )  and u(r, t )  at the interface between the cloud and the pure liquid 
results in the following linearized boundary condition for R(r, t )  : 

where A ,  is the unperturbed radius of the bubble cloud. In addition the solution is 
required to be periodic in time with frequency o. 

The nonlinear equations (8) and (10) do not have any known analytical solution. 
In order to investigate their fundamental behaviour, we therefore examine the 
linearized form of these equations for small changes of the bubble radius 

R(r, t )  = BOP +p)(r, t ) ] ,  

where Ip)(r, t )  I 4 1 .  Then, to the first order in p), 

where wB is the natural frequency of oscillation of a single bubble at  isothermal 
conditions in an unbounded liquid (Plesset & Prosperetti 1977; Knapp et al. 
1970), 

and 

is the low-frequency sound speed in the absence of dispersive effects. If the bubbles 
are in stable equilibrium in their mean or unperturbed state, then 3pG, > 2S/R, and 
both wB and c, are real. 

When surface tension and vapour pressure are neglected (14) reduces to the 
well-known expression of the low-frequency sound speed for a homogeneous mixture 
(van Wijngaarden 1980). On the other hand, (11) is the familiar one-dimensional 
wave equation (van Wijngaarden 1980) in spherical coordinates for the radial propa- 
gation of acoustical disturbances in a bubbly medium in the absence of energy 
dissipation. The corresponding dispersion equation for spherical waves of the 
form [exp i( kr + o t ) ] / r  is 

(15) _-  --=-  ~ 

C k W  o= k2 c; l ( o g )  w;-w2 ’ 

where cmW is the speed of propagation of an harmonic disturbance of angular 
frequency o. The present derivation of ( 1  l), however, has the advantage of explicitly 
formulating the boundary-value problem (8) and (10) which has to be addressed 
when the hypothesis of linearized bubble dynamics is relaxed. 

The solution of (11) in the domain r < A ,  for the case of a spherical bubble cloud 
subject to harmonic far-field pressure excitation is 

(16) 
1 

cos kA, - a, sin (kAo)/kAo 
p(r, t )  = --B 
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Here k is the principal square root (with non-negative real and imaginary parts) of 
k2 as expressed by (15). The other possible solution involving cos (kT) /kr  has been 
eliminated since at the cloud centre q ( r ,  t )  must be finite. Therefore inside the cloud 
( r  G A,) 

R(r, t )  = R,-Rot. 1 )"i""'eid, (17) 
coskA,-a, sin (kA,)/kA, kr 

1 -a, 

cos kr - - 
kr 

PoIPwr 

au Po/Pr 

U(T ,  t )  = it. 
cos kAo-ao sin (kAo)/kAo 

-(r,  t )  = --B 
at cos kA, - a, sin (kA,)/kA, 

3.2. Damped case - harmonic excitation 

Energy dissipation in bubbly flows naturally originates from various sources such as 
viscosity, heat and mass transfer in the two phases and sound radiation from the 
bubbles. In particular, viscous effects occur, owing to the interaction of the flow with 
the boundaries, to the relative velocity of the two phases, or as a consequence of the 
motion associated with the volume changes of the bubbles. In the further 
development of the theory of bubbly clouds with harmonic far-field pressure 
excitation we consider the energy dissipation due to the relative motion of the two 
phases and the most important forms of damping which occur in the dynamics of the 
bubbles due to thermal effects and to the viscosity and compressibility of the 
liquid. 

We therefore address the problem of the simultaneous solution of the fluid 
dynamic equations for the two phases with the relevant interaction terms. Let 
u(x,  t )  be the velocity of the liquid, v(x,  t )  the velocity of the bubbles and w ( x ,  t )  = 
u(x, t ) -u(x ,  t )  the relative velocity of the two phases. The effects of the liquid 
compressibility are included by introducing the speed of sound in the liquid c = 
(dp/dp)i and rewriting the liquid continuity equation (1) as 

where D,/D,t = a/at+ u.V indicates the Lagrangian time derivative following the 
liquid. Note that p(x, t )  is no longer constant owing to the effects of the relative 
motion. Under the additional hypothesis that no bubbles are created or destroyed, 
the number continuity equation gives 

Here D,/D,  t = a/at + 0. V indicates the Lagrangian time derivative following the 
bubbles. Furthermore, the momentum equation for the liquid phase now becomes 
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In order to account for the viscous dissipation in the bubble dynamics, the 
Rayleigh-Plesset equation (3) is modified as indicated by Keller et al. (see 
Prosperetti 1984) : 

where pR( t )  is the liquid pressure a t  the bubble surface, related to the bubble internal 
pressure p ,  (assumed uniform) by 

Here dots denote Lagrangian time derivatives following the bubbles and p is the 
viscosity of the pure liquid. Finally, the momentum balance for the dispersed phase, 
as required for the closure of the problem, is given by the relative motion equation 
for a spherical bubble of negligible mass in a viscous liquid with Stokes’ drag (Voinov 

I ”.” 
2 D,t 2 D,t 

Linearization of (24) and (25) for small changes under the action of a periodic 
pressure perturbation p( t )  = p,( 1 - CT exp iwt) leads to modelling each individual gas 
bubble as an harmonic oscillator 

(27) @ ( t )  + 2A@(t) + wkwrp(t) = &reiwt, 

with internal pressure pB(t )  = pB0[1 - * ( t ) ] ,  where 

and t9 = R,,(2w/xG)i is the ratio of the bubble radius to the bubble thermal 
diffusion length. The three terms of the effective damping coefficient h respectively 
represent the contributions of the viscous, acoustical and thermal dissipation, while 
wBw is the effective natural frequency of the oscillator when excited at frequency w. 
Finally, the complex parameters 6, 4 and u account for the magnitude ratio and 
phase difference between the related quantities. In particular, Re(#)/3 can be 
interpreted as the effective polytropic exponent of the gas in the bubble and 
respectively tends to 1 and y in the isothermal and isentropic limts for w + O  and 
w + + co (Prosperetti 1984). 

Introducing the radial component of the relative velocity W ( T ,  t )  = u(r, t )  -u(r, t )  
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and using the same approach as previously followed for the undamped-case, 
equations (21), (22) ,  (23)  and (26)  reduce to 

i a  a7 ap 1 aP 
r2 ar at at pc2 at 
- - (r2U) = ( 1 - a0)/3, - + ( 1 - a,) 7, -- -- , 

au ap 
(1 -",)/It = -- ar ' 

aw -+ (9v -+-- 1 8R3) w+--=O* zz 
at R: R; at 

(33)  

(35) 

Upon the assumption of a (27c/w)-periodic behaviour in time, the above forms of 
energy dissipation can be incorporated in the theory for the linearized dynamics of 
bubble clouds subject to harmonic far-field pressure excitation. The previous 
approach leads to a generalized definition of the dispersion equation : 

where cmo now becomes complex and v = p/p  is the kinematic viscosity of the liquid. 
Note that the effects of relative motion and liquid compressibility are small in flows 
of moderate void fraction where a 4 1 and cmo 4 c. The expressions for the bubble 
radius, the relative velocity and the bubble concentration per unit liquid volume now 
become 

1 - iwR,/c 
R(r, t )  = R,-R,s 9 (38)  cos kA, - a, sin (kA,)/kA, 

Po/Pwr ) ' ( i -ao)  
cos kA, - a, sin (kA,)/kA, 1 + 9v/iwRt kr 

9 (40) 
1 -a, 

~ ( r ,  t )  = ie: 

P(r,  t )  = 

while the formal expressions (18)-(20) of the solution for the other flow quantities 
remain the same. 

The entire flow has therefore been determined in terms of the material properties 
of the phases, the nature of the far-field pressure excitation and of the assigned 
quantities: a,, R,, A ,  and p,. 

3.3. Damped case - arbitrary excitation 
Owing to the linear nature of the problem, the above solution can readily be 
generalized to the case of arbitrary but small far-field pressure excitation. If 
p,(t) = p , [ l + ~ ( t ) ]  and H ( w )  is the Fourier transform of ~ ( t ) ,  such that in complex 
notation 

(41) ~ ( t )  = l m H ( u )  eiwt dw, 
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then the linearized solutionf(r, t )  of (1  1) admits the following integral representation : 

where f, ( r ,  t ,  w )  is the corresponding harmonic solution for given w and E = 1 .  Thus, 
for instance, the normalized bubble radius for the case of energy dissipation is 
expressed by 

where k,  wBw and h are functions of the angular frequency o. 

4. Results and discussion 
I n  this Section we consider the case of air bubbles (y = 1.4, xG = 0.0002 m2/s) in 

water (p = 1000 kg/ms, ,u = 0.001 Ns/m2, S = 0.0728 N/m, c = 1485 m/s). The other 
relevant flow parameters are: p ,  = lo6 Pa, R,-= 0.001 m, A ,  = 0.1 m and E = 0.1. 
Finally, in most cases the parameter w i  A:/ck = 3a,( 1 - a,) Ai/Rt  is assigned and the 
void fraction a, is determined accordingly. Also note that in the damped bubble 
dynamic case the normalization of the data has been carried out with respect to 
the bubble resonance frequency wB defined as the solution of the equation: 
wB = wBa(wB). This choice preserves the occurrence of bubble resonance for w/wB = 1, 
with the advantage of making the plots for the damped case more readily comparable 
to the corresponding ones in the absence of damping. 

In  order to identify the natural frequencies and mode shapes of the bubble cloud 
we now examine first the nature of the above solution in the absence of energy 
dissipation. From (16) note that if p,( t )  = p ,  oscillations only occur when 

w = wB, or tan kA, = kA,/a,, (44) 

i.e. when the exciting frequency w experienced by each bubble is equal to the natural 
frequency wB of an individual bubble in an infinite liquid (bubble resonance 
condition) or to one of the natural frequencies w,  of the bubble cloud. It follows from 
the solution of the transcendental equation (44) in the limit for low-void-fraction 
flows and from the expression (15) for k that  the natural frequencies w, of the cloud 
are approximately given by the following sequence : 

For large n this sequence converges to  the frequency wB corresponding to the bubble 
resonance conditions. For small n the behaviour of these sequences is regulated by 
the values of 3a,( 1 -ao) Ai/Ri  = w i  Ai/cL. When this parameter is of order unity or 
larger, the lower terms of the above sequence will in general extend to values much 
smaller than the ones given by the bubble resonance condition, thus indicating that 
the natural modes can occur at comparatively low frequency. On the other hand, 
when the reverse is the case all the terms of this sequence are contained in a small 
range below bubble resonance conditions. In this case all the natural modes of the 
system occur with a frequency only slightly lower than the bubble resonance 
frequency. The occurrence of resonances in the cloud divides the flow solutions 
in three different regimes, namely : sub-resonant (0 < w < wl) ; trans-resonant 
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FIQWRE 2. Natural mode shapes as a function of the normalized radial position r / A ,  in the cloud 
for various orders n = 1 (solid line); 2 (dash-dotted line); 3 (dotted line); 4 (broken line). The 
arbitrary vertical scale represents the amplitude of the normalized undamped oscillations of the 
bubble radius, the pressure and the bubble concentration per unit liquid volume. The oscillations of 
the liquid velocity and of the relative velocity between the two phases are proportional to the slopes 
of these curves. 

(w,  < w < wB) ; and super-resonant (w > wB). AS we shall see later, this has significant 
consequences on the behaviour of the flow. The above expression (45) corresponds to 
equation (144) of Omta (1987) for the natural frequencies of a bubble cloud. Direct 
comparison of these equations is not possible owing to the different modelling of 
bubble dynamics in the two cases. However, it is easily verified that they both 
reduce, as expected, to the same expression for w, when 3ao( 1 -ao) Ai/Ri  P 1, when 
surface tension and void fraction are small and when the gas in the bubbles behaves 
isothermally. In this limiting case the natural frequencies of the cloud are 
independent of the bubble radius and vary slowly with the cloud radius and the void 
fraction when the total volume of the gas phase is fixed, as indicated by Omta 
(1987). 

The natural modes of oscillation of the cloud associated to each natural frequency 
on are easily obtained by substituting the corresponding solutions of the 
transcendental equation (44) in the relevant expressions of the flow parameters. The 
first few natural mode shapes of the relative perturbations of the bubble radius, 
pressure and bubble concentration are depicted in figure 2 as a function of the 
normalized radial coordinate r/Ao. The velocity of the liquid and the relative 
velocity of the two phases are proportional to the slope of these curves. Since each 
bubble is assumed to react to an essentially uniform far-field pressure, the validity 
of the model is limited to orders n such than n <  A,/R,. Note that the first 
mode involves almost uniform oscillations of the bubbles at all radial positions 
within the cloud. Higher modes involve amplitudes of oscillation near the centre of 
the cloud which become larger and larger relative to the amplitudes in the rest of the 
cloud. In effect an outer shell of bubbles essentially shields the exterior fluid from the 
oscillations of the bubbles in the central core, with the result that the pressure 
oscillations in the exterior fluid are of smaller amplitude for the higher modes. 

The relative amplitude of the undamped bubble radius oscillations at the surface 
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FIQURE 3. Normalized amplitude of the bubble radius oscillations at the cloud surface (r = A,) &s 

a function of the squared reduced frequency wa/oi for 3a,( 1 -a,) Ai/R:  = ina in the undamped case 
(solid line) and in the presence of bubble dynamics damping and relative motion (dash-dotted 
line). 

of the cloud is shown in figure 3 as a function of the normalized square frequency for 
a typical case of 3a,(1 -aO)Ai/RE = in2. The corresponding solution with bubble 
dynamic damping and relative motion is also shown in the same figure for 
comparison. Note the peaks of the undamped bubble response at  the first two natural 
frequencies w: x 0.5wg, w i  w 0.90; and at the bubble resonance frequency. 
Infinitely many higher-order resonances occur between w2 and wB, but are not 
reported in the figure for clarity. The phase of the bubble response alternately 
changes by fn at the location of each resonance and in correspondence with the 
nodes between resonances. The other flow variables also display a similar behaviour, 
but their higher resonance peaks are less pronounced. The introduction of energy 
dissipation has dramatic effects on the bubble radius response. I n  this case the 
solution, as expected, is no longer singular. More surprisingly, all resonance peaks 
except the &st are virtually eliminated and replaced by a second much smaller and 
broader peak around the individual bubble natural frequency. In addition, resonance 
peaks are also slightly shifted toward lower frequencies. Similarly, the bubble radius 
response at the centre of the cloud (see figured) clearly shows the occurrence of the 
first resonant mode. The peak corresponding to the second resonant mode, whose 
amplitude is larger in the inner regions of the cloud, is also recognizable, although 
greatly attenuated. On the other hand, the peak at the bubble resonance frequency 
is absent because it is not associated with any global motion in the flow and because 
any external disturbance a t  the bubble natural frequency is quickly attenuated by 
the resonant response of the bubbles in the outer regions of the cloud. Also note that 
the amplitude of the bubble radius response is larger at the centre of the cloud than 
at the surface. The same phenomena also qualitatively characterize all of the other 
flow variables. Therefore the first natural mode of oscillation of the cloud at a 
frequency ow o1 represents the most important component of the cloud response. Its 
effects also dominate the contributions of individual bubbles at their own natural 
frequency. These conclusions fully agree with the theory and computations of Omta 
(1987). The above results clearly indicate that the dynamic properties of bubble 
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FIQURE 4. Normalized amplitude of the bubble radius oscillations a t  the cloud centre ( r  = 0) as 
a function of the squared reduced frequency w2/wE for 3a0( 1 -ao) A:/R: = in2 in the undamped case 
(solid line) and in the presence of bubble dynamics damping and relative motion (dash-dotted 
line). 

Square of the reduced frequency, w'/wk 

FIQURE 5. Real part of the normalized wavenumber kAo as a function of the squared reduced 
frequency w * / w i  for 3a0( 1 -a,) A:/R: = in2 in the undamped case (solid line) and in the presence of 
bubble dynamics damping and relative motion (daah-dotted line). 

clouds are not adequately described in terms of the independent responses of 
individual bubbles, a t  least as long as the parameter 3a,( 1 -a,) At/R; is of order one 
or larger and therefore the first natural frequency of the cloud is significantly smaller 
than oB. 

The real and imaginary parts of the wavenumber k are respectively responsible for 
the attenuation and the speed of propagation of the radial disturbances throughout 
the cloud. The behaviour of kA, as a function of the normalized square frequency is 
shown in figures 5 and 6 for 3a,( 1 -ao) Ai/Rt = in2. Since in the no-damping case 
k2 is real, k is either real or purely imaginary, with a singularity at  the bubble 
resonance frequency. On the other hand, the introduction of bubble dynamic 
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FIGVRE 6. Imaginary part of the normalized wavenumber kAo as a function of the squared reduced 
frequency w ' / w i  for &,(I -a,)Ai/R: = ina in the undamped case (solid line) and in the presence 
of bubble-dynamics damping and relative motion (dash-dotted line). 
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FIGURE 7. Normalized amplitude of the bubble-radius damped oscillations as a function of the 
normalized radial coordinate r /Ao in the presence of bubble dynamics damping and relative motion 
for 3a0( 1 -ao) Ai/R:  = in2 and various values of the excitation frequency: w2 = 4 1 2  (solid line) ; 
(w:+w:)/2 (dash-dotted line) ; 1.1~:  (dotted line) and 2wi  (broken line). 

damping and relative motion makes k2 a complex number and eliminates the 
singularity for o = wB. 

The relative amplitudes of the damped bubble-radius oscillations throughout the 
cloud a t  various frequencies are illustrated in figure 7 for 3a,( 1 -ao) A:/Rt = in2. Note 
that the bubble response is larger at the centre of the cloud for forcing frequencies 
below the bubble natural frequency, while the reverse is the case for super-resonant 
excitation. In fact, in the sub-resonant regime the bubbles have ample time to react 
and therefore behave in a compliant way, with the largest motion concentrated in the 
interior of the cloud. In  this case the pressure change is essentially in phase with the 



Linearized dynamics of spherical bubble clouds 169 

0 0.5 1 .0 1.5 

Square of the reduced frequency, 02/& 

FIGURE 8. Normalized amplitude of the bubble-radius damped‘ oscillations at the cloud surface 
( r  = A,,) as a function of the squared reduced frequency w 2 / w i  at various void fractions. The curves 
refer to the following values of the parameter 3a,(l -a,)A;/R:: &r* (solid line); (dash-dotted 
line); and in2 (dotted line). 

excitation and the bubble response is almost in phase opposition. Violent oscillations 
of the bubbles near the centre of the cloud have also been obtained by Omta (1987), 
in his nonlinear computations of the cloud response to a sudden change of the 
external pressure. In super-resonant flows, on the other hand, because of their virtual 
mass the bubbles cannot respond as quickly as the excitation requires and therefore 
appear to be ‘stiffer’. This effect clearly increases with the excitation frequency and 
therefore the cloud response, initially more concentrated in the outer regions, 
becomes more uniform at higher frequencies. In this case the changes of both the 
pressure and of the bubble radius are almost in phase with the excitation. Finally, in 
the trans-resonant regime the situation is complicated by the presence of more 
articulated internal motions of the cloud due to the occurrence of resonances. In  this 
case the phase of the flow parameters with respect to the excitation depends on the 
dominant oscillation mode in the cloud. Between the first and the second natural 
frequencies, for example, the bubble radius response is essentially in phase with the 
excitation, while the pressure is almost in phase opposition. 

The effects of void-fraction changes are illustrated in figures 8-1 1, which show the 
relative amplitudes of the damped oscillations of the main flow quantities at the cloud 
surface as functions of the normalized square frequency for three values of the 
parameter 3a0(1 -ao) Ai/Ri .  The corresponding bubble radius response at the centre 
of the cloud is illustrated in figure 12 for comparison. Since the natural frequencies 
are determined by the above parameter through (45), the peaks corresponding to the 
same natural modes of oscillation of the cloud occur at  different frequencies and 
move towards the origin at  higher void fractions. The maximum amplitudes of the 
liquid velocity and of the bubble concentration per unit liquid volume increase with 
the void fraction owing to the greater compressibility of the cloud, while the pressure 
peaks are not appreciably affected. On the other hand, the maximum amplitude of 
the bubble growth decreases with the void fraction. As mentioned in the introduction, 
this phenomenon has been observed by Arakeri & Shanmuganathan (1985), and by 
M. Billet (1986, private communication) in travelling bubble cavitating flows. It has 
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FIQURE 9. Normalized amplitude of the pressure damped oscillations a t  the cloud surface ( r  = A,) 
as a function of the squared reduced frequency w 2 / o i  at various void fractions. Kotation as 
figure 8. 
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FIQURE 10. Normalized amplitude of the liquid-velocity damped oscillations a t  the cloud surface 
( r  = A,) as a function of the squared reduced frequency w 2 / w t  at various void fractions. Notation 
as figure 8. 

significant consequences for the generation of noise in bubble clouds and bubbly 
flows in general. It also has important implications with regard to the problem of 
cavitation damage in cavitating flows. 

Significant analogies exist between the results shown here for the case of bubble 
clouds subject to far-field pressure excitation and the ones previously obtained for 
the linearized dynamics of bubbly flows over slender surfaces (d’Agostino et al. 1988, 
1984). In both flows the dispersive behaviour due to bubble dynamic effects is 
controlled by similar parameters, G and k, which depend on the void fraction and the 
excitation frequency. These parameters also determine the elliptic or hyperbolic 
nature of the problem, the penetration of external disturbances and the occurrence 
of the natural mode shapes and frequencies of the flow. 
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FIQURE 11. Normalized amplitude of the oscillations of the concentration of bubbles per unit liquid 
volume at the cloud surface ( r  = A,) as a function of the squared reduced frequency d/ok at various 
void fractions. Notation as figure 8. 
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FIQURE 12. Normalized amplitude of the bubble-radius damped oscillations at the cloud centre 
(r = 0) aa a function of the squared reduced frequency d/o; at various void fractions. Notation as 
figure 8. 

We now consider a bubble cloud subject to a Gaussian-shaped far-field pressure 

where q( t )  = E exp(-t2/2a2). The Fourier transform of q( t ) ,  as defined by (41), is 

~ ( w )  = ( 2 / l r ) + a  exp (-&02a2). 

As shown earlier, the solution for this flow is expressed by the inverse Fourier 
integrals (42). When energy dissipation is neglected the integrands in (42) have 
simple pole singularities corresponding to the natural mode frequencies w = w, of the 
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FIGURE 13. Normalized amplitude of the bubble-radius damped oscillations at the cloud surface 
( r  = A,) as a function of the normalized time w1 t/2n for oB a = 71: and for various void fractions. 
Notation as figure 8. 

cloud. The bubble radius and the concentration of bubbles per unit liquid volume 
also have simple poles at the bubble resonance condition w = toB. The latter also 
corresponds to the essential singularity due to the pole of k which appears in the 
argument of the trigonometric functions. I n  physical terms this reflects the fact that 
the absence of damping allows the bubble radius response to grow unbounded at 
bubble resonance conditions. This difficulty is eliminated by the introduction of 
dissipative effects which limit the bubble response and generate a complex k2. In  this 
case the singularities are removed from the real o-axis and the integrals (42) are 
readily computed. 

Also in the case of Gaussian-shaped excitation it is convenient to define a 
characteristic parameter whose value is related to  the importance of cloud and 
bubble resonance effects. By analogy with the solution for harmonic excitation where 
w is replaced by lla, we choose l/oia2 as a representative reduced frequency 
parameter in the case of Gaussian-shaped excitation. 

The bubble-radius normalized response as a function of time is shown in figure 13 
for w&a2 = n2 and for various void fractions corresponding to  three values of the 
parameter 3a0( 1 -ao) A i / R i .  The far-field pressure excitation has the effect of 
initiating an oscillatory motion in the cloud, which slowly decays owing to the 
presence of damping. The normalization of time with the first natural frequency w1 
of the system clearly shows that the Gaussian-shaped change of the far-field pressure 
excites almost exclusively the first mode of oscillation of the bubble cloud. This 
finding confirms in a more general situation the observation that the first mode of 
oscillation represents the most important component of the cloud's dynamic 
response, as previously indicated by the results with harmonic excitation. Also note 
that the maximum amplitude of the bubble radius response increases with the void 
fraction. This is not surprising in view of the following considerations. In  the present 
case the frequency spectrum of the far-field pressure excitation is mostly 
concentrated below the first natural frequency of the cloud. In turn, a t  higher values 
of the parameter 3a0( 1 - ao) At/Ri  the natural frequencies of the cloud move towards 
the origin, thus closer to  the main part of the excitation spectrum. Therefore the 
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transfer of energy from the external pressure field to the cloud system is enhanced, 
resulting in larger amplitudes of the bubble radius response at  higher void 
fractions. 

5. Limitations 
We now briefly examine the restrictions imposed on the theory developed above 

by the various simplifying assumptions that have been made. Specifically we shall 
discuss the limitations due to the introduction of the continuum model of the flow, 
to the use of the linear perturbation approach in deriving the solution and to the 
neglect of the lacal pressure perturbations in the neighbourhood of each individual 
bubble. In what follows we shall refer to the solution for harmonic excitation, since 
it represents the basis of the generalization to arbitrary-shaped far-field forcing 
pressure. 

The perturbation approach simply requireb that Q, Q 1 in (38), a constraint that 
can be satisfied far from resonance conditions with proper choice of the excitation 
relative amplitude E. This is probably the most restrictive limitation of the present 
analysis. 

For the continuum approach to be valid, the two phases must be minutely 
dispersed with respect to the shortest characteristic length of the flow, here either the 
cloud radius A, or the wavelength 2xlk of the disturbances in the r-direction. Hence 
the average bubble spacing s = O(R,/a\) is required to satisfy the most restrictive 
of the two conditions : a Q A, and ks Q 1. 

In order to estimate the error associated with the neglect of local pressure effects 
due to the dynamic response of each individual bubble, we consider the pressure 
perturbation experienced by one bubble as a consequence of the growth or collapse 
of a neighbour : 

where R = R,(l+rp) is given by (38). To the same order of approximation used to 
develop the present analysis, comparison with the global pressure change Ap = 
p(r ,  t ) -po  expressed by (18) then shows that the local pressure perturbations are 
unimportant if 

R, w2( 1 - iw R,/c) -I s w t u  - w2 + iw2h ((1. (47 1 

Far from the bubble resonance regime, this condition is generally satisfied in low- 
void-fraction flows. 

6. Conclusions 
The results of this study reveal a number of important effects occurring in confined 

bubbly and cavitating flows. As anticipated in the introduction and confirmed by the 
present theory, the dynamics of the bubbles is strongly coupled through the pressure 
and velocity fields with the global dynamics of the flow in the bubble cloud. The 
bubbles are responsible for the occurrence of bubble resonance phenomena and for 
the drastic modification of the sonic speed in the medium, which decreases and 
becomes dispersive (frequency dependent). Furthermore, internal resonant modes of 
oscillation are possible at the system’s natural frequencies owing to the presence of 
boundaries confining the bubbly region of the flow. 
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The inertial effects on the dynamics of the bubbles are important when the exciting 
frequency is comparable with or larger than the bubble natural frequency, i.e. when 
the reduced frequency parameters w 2 / w k ,  for the flows with harmonic excitation, or 
l/oi a2, in the case of Gaussian-shaped excitation, are of order unity or greater. The 
viscous and thermal components of bubble dynamic damping are the dominant form 
of energy dissipation in the flow, while the contributions of the relative motion and 
liquid compressibility are almost always negligible in most bubbly mixtures of 
technical importance, regardless of the value of the other flow parameters. 

The occurrence of resonances leads in turn to the identification of three different 
flow regimes, here indicated as sub-resonant, trans-resonant and super-resonant 
according to the value of the exciting frequency with respect to the cloud and the 
individual bubble natural frequencies. The natural frequencies of the cloud are 
always lower than the natural frequency of each individual bubble. In particular, 
they become significantly smaller than the bubble resonance frequency when the 
parameter 3a0( 1 -ao) Ai/Ri = w t  A:/& is of order unity or larger. In the presence of 
damping the first natural mode of oscillation of the cloud is the most important 
component of the cloud dynamic response. Its effects dominate the ones of higher 
modes and also the contributions of individual bubbles a t  their own natural 
frequency. In this case significant global bubble interactions occur in the flow, with 
the result that the dynamic and acoustical properties of bubbly clouds are no longer 
adequately described in terms of the simultaneous but independent responses of the 
individual bubbles. In particular, as we intend to discuss in a later publication, the 
acoustical absorption cross-section of a bubble cloud is very significantly different 
from the acoustical absorption cross-section of each bubble in the cloud, as well as 
from that of a single larger bubble whose volume is equal to the total volume of the 
dispersed phase in the cloud. It appears therefore that the acoustical properties and 
behaviour of any given volume of the dispersed phase depend strongly on the scale 
of the dispersion of such phase in the bubbly mixture. This consideration should be 
taken into account in the analysis of noise in bubbly and cavitating flows. An 
increase of the void fraction also causes a substantial reduction of the amplitude of 
the bubble response. This, in turn, could reduce the acoustic noise in bubbly mixtures 
or the damage potential in cavitating flows. The above phenomena can contribute to 
explain some of the unexpected changes experimentally observed in the noise 
spectrum of bubbly cavitating flows. 

The present theory has been derived under fairly restrictive simplifying 
assumptions involving the flow geometry and the linearization of both the velocity 
field and the bubble dynamics. Therefore i t  is not expected to provide a quantitative 
description of the unsteady behaviour of bubble clouds subject to far-field pressure 
excitation, except that in the acoustical limit. Large bubble-radius perturbations 
occur in most flows of practical interest; hence the most crucial limitation in the 
present paper is the linearization of the bubble dynamics, while the assumption of 
small velocity perturbations is likely to be more widely justified. If all the above 
linearizations were omitted, only numerical solutions could be realistically attempted. 
However, if only the hypothesis of linear bubble dynamics is abandoned, the 
development of quasi-linear theories might be possible and would have a much 
broader applicability. 
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